References and Notes
<A NAME="RG23610ST-1A">1a</A>
Morita K. inventors; JP 6,803,364.
; Chem. Abstr. 1968, 69, 58828s
<A NAME="RG23610ST-1B">1b</A>
Morita K.
Suzuki Z.
Hirose H.
Bull.
Chem. Soc. Jpn.
1968,
41:
2815
<A NAME="RG23610ST-1C">1c</A>
Baylis AB, and
Hillman MED. inventors; DE 2,155,113.
; Chem. Abstr. 1972, 77, 34174q
<A NAME="RG23610ST-1D">1d</A>
Hillman MED, and
Baylis AB. inventors; US 3,743,669.
For reviews, see:
<A NAME="RG23610ST-2A">2a</A>
Drewes SE.
Roo GHP.
Tetrahedron
1988,
44:
4653
<A NAME="RG23610ST-2B">2b</A>
Basavaiah D.
Rao PD.
Hyma RS.
Tetrahedron
1996,
52:
8001
<A NAME="RG23610ST-2C">2c</A>
Ciganek E.
Org.
React.
1997,
51:
201
<A NAME="RG23610ST-2D">2d</A>
Langer P.
Angew.
Chem. Int. Ed.
2000,
39:
3049
<A NAME="RG23610ST-2E">2e</A>
Basavaiah D.
Rao AJ.
Satyanarayana T.
Chem.
Rev.
2003,
103:
811
<A NAME="RG23610ST-3A">3a</A>
Price KE.
Broadwater SJ.
Jung HM.
McQuade DT.
Org. Lett.
2005,
7:
147
<A NAME="RG23610ST-3B">3b</A>
Aggarwal VK.
Fulford SY.
Lloyd-Jones GC.
Angew. Chem. Int. Ed.
2005,
44:
1706
<A NAME="RG23610ST-3C">3c</A>
Price KE.
Broadwater SJ.
Walker BJ.
McQuade DT.
J.
Org. Chem.
2005,
70:
3980
<A NAME="RG23610ST-4A">4a</A>
Santos LS.
Pavam CH.
Almeida WP.
Coelho F.
Eberlin MN.
Angew.
Chem. Int. Ed.
2004,
43:
4330
<A NAME="RG23610ST-4B">4b</A>
Krafft ME.
Haxell TFN.
Seibert KA.
Abboud KA.
J. Am. Chem. Soc.
2006,
128:
4174
<A NAME="RG23610ST-5A">5a</A>
Iwabuchi Y.
Nakatani M.
Yokoyama N.
Hatakeyama S.
J.
Am. Chem. Soc.
1999,
121:
10219
<A NAME="RG23610ST-5B">5b</A>
Yang K.-S.
Lee W.-D.
Pan J.-F.
Chen K.-M.
J. Org. Chem.
2003,
68:
915
<A NAME="RG23610ST-5C">5c</A>
Imbriglio JE.
Vasbinder MM.
Miller SJ.
Org. Lett.
2003,
5:
3741
<A NAME="RG23610ST-5D">5d</A>
McDougal NT.
Schaus SE.
J.
Am. Chem. Soc.
2003,
125:
12094
<A NAME="RG23610ST-5E">5e</A>
Wang J.
Li H.
Yu X.
Zu L.
Wang W.
Org. Lett.
2005,
7:
4293
<A NAME="RG23610ST-5F">5f</A>
Xu J.
Guan Y.
Yang S.
Ng Y.
Peh G.
Tan C.-H.
Chem.
Asian J.
2006,
1:
724
<A NAME="RG23610ST-5G">5g</A>
Berkessel A.
Roland K.
Neudörfl JM.
Org. Lett.
2006,
8:
4195
<A NAME="RG23610ST-5H">5h</A>
Nakano A.
Takahashi K.
Ishihara J.
Hatakeyama S.
Org. Lett.
2006,
8:
5357
<A NAME="RG23610ST-6">6</A>
da Silva JFM.
Garden SJ.
Pinto AC.
J. Braz. Chem. Soc.
2001,
12:
273
<A NAME="RG23610ST-7">7</A>
Garden SJ.
Skakle JMS.
Tetrahedron
Lett.
2002,
43:
1969
<A NAME="RG23610ST-8A">8a</A>
1,3-Dipolar
Cycloaddition Chemistry
Vol. 1 and 2:
Padwa A.
Wiley;
New York:
1984.
<A NAME="RG23610ST-8B">8b</A>
Tsuge O.
Kanemasa S. In Advances in Heterocyclic
Chemistry
Vol. 45:
Katritzky AR.
Academic Press;
San Diego:
1989.
p.231-252
<A NAME="RG23610ST-8C">8c</A>
Advances in Cycloaddition
Vol.
3:
Grigg R.
Sridharan V.
Curran DP.
Jai
Press;
London:
1993.
p.161-180
<A NAME="RG23610ST-8D">8d</A>
Nyerges M.
Feges I.
Toke L.
Tetrahedron Lett.
2000,
41:
7951
<A NAME="RG23610ST-8E">8e</A>
Dondas HA.
Grigg R.
MacLachlan WS.
MacPherson DT.
Markandu J.
Sridharan V.
Suganthan S.
Tetrahedron Lett.
2000,
41:
967
<A NAME="RG23610ST-8F">8f</A>
Grigg R.
Thornton-Pett M.
Yoganathan G.
Tetrahedron
1999,
55:
1763
<A NAME="RG23610ST-8G">8g</A>
Grigg R.
Thornton-Pett M.
Xu J.
Xu L.-H.
Tetrahedron
1999,
55:
13841
<A NAME="RG23610ST-8H">8h</A>
Pearson WH.
Clark RB.
Tetrahedron
Lett.
1997,
38:
7669
<A NAME="RG23610ST-8I">8i</A>
Pearson WH.
Mi Y.
Tetrahedron Lett.
1997,
38:
5441
<A NAME="RG23610ST-8J">8j</A>
Waldmann H.
Blaser E.
Jansen M.
Letschert H.-P.
Angew. Chem., Int. Ed.
Engl.
1994,
33:
683
<A NAME="RG23610ST-9">9</A>
Sebahar PR.
Williams RM.
J. Am. Chem. Soc.
2000,
122:
5666
<A NAME="RG23610ST-10A">10a</A>
Pandey G.
Banerjee P.
Gadre SR.
Chem. Rev.
2006,
106:
4484
<A NAME="RG23610ST-10B">10b</A>
Coldham I.
Hufton R.
Chem. Rev.
2005,
105:
2765
<A NAME="RG23610ST-10C">10c</A>
Nair V.
Suja TD.
Tetrahedron
2007,
63:
12247
<A NAME="RG23610ST-10D">10d</A>
Chen X.-H.
Wei Q.
Luo S.-W.
Xiao H.
Gong L.-Z.
J. Am. Chem.
Soc.
2009,
131:
13819
<A NAME="RG23610ST-10E">10e</A>
Kumar A.
Gupta G.
Srivastava S.
J.
Comb. Chem.
2010,
12:
458
<A NAME="RG23610ST-11A">11a</A>
Kumar RR.
Perumal S.
Senthilkumar P.
Yogeeswari P.
Sriram D.
Tetrahedron
2008,
64:
2962
<A NAME="RG23610ST-11B">11b</A>
Kumar RR.
Perumal S.
Senthilkumar P.
Yogeeswari P.
Sriram D.
Eur. J. Med. Chem.
2009,
3821
<A NAME="RG23610ST-11C">11c</A>
Kumar RR.
Rajesh SM.
Perumal S.
Banerjee D.
Yogeeswari P.
Sriram D.
Eur. J. Med.
Chem.
2010,
411
<A NAME="RG23610ST-11D">11d</A>
Liu H.
Dou G.
Shi D.
J.
Comb. Chem.
2010,
12:
292
<A NAME="RG23610ST-12">12</A>
Alkaloids Chemical and Biological
Perspectives
Monlineux RJ.
Pelletier SW.
Wiley;
New
York:
1987.
Chap. 1.
<A NAME="RG23610ST-13A">13a</A>
Jossang A.
Jossang P.
Hadi HA.
Sevenet T.
Bodo B.
J. Org. Chem.
1991,
56:
6527
<A NAME="RG23610ST-13B">13b</A>
James MNG.
Williams GJB.
Can.
J. Chem.
1972,
50:
2407
<A NAME="RG23610ST-13C">13c</A>
Elderfield RC.
Gilman RE.
Phytochemistry
1972,
11:
339
<A NAME="RG23610ST-13D">13d</A>
Cui CB.
Kakeya H.
Okada G.
Onose R.
Osada H.
J.
Antibiot.
1996,
49:
527
<A NAME="RG23610ST-14A">14a</A>
Kozikowski AP.
Acc. Chem. Res.
1984,
17:
410
<A NAME="RG23610ST-14B">14b</A>
Howe RK.
Shelton BR.
J.
Org. Chem.
1990,
55:
4603
<A NAME="RG23610ST-14C">14c</A>
De Amici M.
De Michelli C.
Misani V.
Tetrahedron
1990,
46:
1975
<A NAME="RG23610ST-14D">14d</A>
Cohen VL, and
Kleinmann EE. inventors; WO 24192.
; Chem. Abstr. 1995, 123: 296610t
<A NAME="RG23610ST-14E">14e</A>
Carroll WA.
Grieco PA.
J.
Am. Chem. Soc.
1993,
115:
1164
<A NAME="RG23610ST-14F">14f</A>
Earley WG.
Oh T.
Overman LE.
Tetrahedron Lett.
1988,
29:
3785
<A NAME="RG23610ST-14G">14g</A>
Ban Y.
Taga N.
Oishi T.
Chem.
Pharm. Bull.
1976,
24:
736
<A NAME="RG23610ST-14H">14h</A>
Ban Y.
Seto M.
Oishi T.
Chem.
Pharm. Bull.
1975,
23:
2605
<A NAME="RG23610ST-14I">14i</A>
Ban Y.
Taga N.
Oishi T.
Tetrahedron
Lett.
1974,
15:
187
<A NAME="RG23610ST-14J">14j</A>
Van Tamelen EE.
Yardley JP.
Miyano M.
Hinshaw WB.
J. Am. Chem. Soc.
1969,
91:
7333
<A NAME="RG23610ST-15">15</A>
Ding K.
Lu Y.
Nikolovska-Coleska Z.
Wang G.
Qiu S.
Shangary S.
Gao W.
Qin D.
Stuckey J.
Krajeswski K.
Roler PP.
Wang S.
J.
Med. Chem.
2006,
49:
3432
<A NAME="RG23610ST-16">16</A>
Hilton ST.
Ho TCT.
Pljevalijcic G.
Jones K.
Org. Lett.
2000,
2:
2639
<A NAME="RG23610ST-17A">17a</A>
Karthikeyan K.
Perumal PT.
Etti S.
Shanmugam G.
Tetrahedron
2007,
63:
10581
<A NAME="RG23610ST-17B">17b</A>
Karthikeyan K.
Seelan TV.
Lalitha KG.
Perumal PT.
Bioorg.
Med. Chem. Lett.
2009,
19:
3370
<A NAME="RG23610ST-17C">17c</A>
Karthikeyan K.
Kumar RS.
Muralidharan D.
Perumal PT.
Tetrahedron Lett.
2009,
50:
7175
<A NAME="RG23610ST-17D">17d</A>
Praveen C.
Karthikeyan K.
Perumal PT.
Tetrahedron
2009,
65:
9244
<A NAME="RG23610ST-17E">17e</A>
Ramchandiran K.
Karthikeyan K.
Muralidharan D.
Perumal PT.
Tetrahedron Lett.
2010,
51:
3006
<A NAME="RG23610ST-17F">17f</A>
Karthikeyan K.
Sivakumar PM.
Doble M.
Perumal PT.
Eur. J. Med. Chem.
2010,
3446
<A NAME="RG23610ST-18A">18a</A>
Karthikeyan K.
Perumal PT.
Synlett
2009,
2366
<A NAME="RG23610ST-18B">18b</A>
Zulykama Y.
Perumal PT.
Aust. J. Chem.
2007,
60:
205
<A NAME="RG23610ST-18C">18c</A>
Zulykama Y.
Perumal PT.
Tetrahedron Lett.
2009,
50:
3892
<A NAME="RG23610ST-18D">18d</A>
Zulykama Y.
Uma U.
Devi PC.
Perumal PT.
Can. J. Chem.
2009,
87:
1682
<A NAME="RG23610ST-19">19</A>
Experimental Procedure
for the Synthesis of Baylis-Hillman Adducts 3a-g
A
mixture of isatin 1a-g (1.62 mmol), N-methyl
maleimide (2, 1.35 mmol), and DABCO (30
mol%) was stirred at 80 ˚C under neat
conditions. Completion of the reaction was evidenced by TLC analysis.
The residue was dissolved in EtOAc (20 mL) and H2O washed
(2 × 20 mL). The EtOAc layer was dried
over anhyd Na2SO4, and the solvent was removed
under reduced pressure to obtain a crude product, which was purified
by column chromatography with EtOAc-PE (2:8) as an eluent
to obtain Baylis-Hillman adducts 3a-g.
Baylis-Hillman
Adduct 3a
Colorless solid; mp 148-150 ˚C.
IR: 3368, 3115, 1722, 1610, 1488, 1380, 1162 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 2.88 (s,
3 H), 3.25 (s, 3 H), 4.73 (br s, 1 H), 6.77 (s, 1 H), 6.91 (d, 1
H, J = 7.7
Hz), 7.09 (t, 1 H, J = 7.7
Hz), 7.28 (d, 1 H, J = 6.9
Hz), 7.38 (t, 1 H, J = 7.6
Hz). ¹³C NMR (125 MHz, CDCl3): δ = 23.8,
26.8, 74.6, 109.4, 123.8, 124.8, 127.5, 128.8, 131.2, 143.9, 147.4,
168.9, 169.5, 174.5. MS: m/z = 273 [M + H]+.
Anal. Calcd for C14H12N2O4 (272.08): C,
61.76; H, 4.44; N, 10.29. Found: C, 61.84; H, 4.47; N, 10.16.
<A NAME="RG23610ST-20">20</A>
Crystallographic data of compound 3f in this letter have been deposited with
the Cambridge Crystallographic Data Centre as supplemental publication
No. CCDC-787472. Copies of the data can be obtained, free of charge
on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 (1223)336033
or email: deposit@ccdc.cam.ac.uk].
<A NAME="RG23610ST-21">21</A>
Experimental Procedure
for the Synthesis of Spiropyrrolidines 5a-e
A
mixture of isatin 1 (1 mmol), sarcosine
(4, 1.5 mmol), and Baylis-Hillman
adducts 3 (1 mmol) was refluxed in MeOH (10
mL). Completion of the reaction was evidenced by TLC analysis. The
solvent was removed under vacuo, and the crude product was subjected
to column chromatography using EtOAc-PE (2:8) as an eluent
to afford pure spiropyrrolidines 5a-e.
3a′-(3-Hydroxy-1-methyl-2-oxoindolin-3-yl)-1,2′,5′-trimethyl-3′,3a′-dihydro-2′
H
-spiro{indoline-3,1′-pyrrolo[3,4-
c
]pyrrole}-2,4′,6′(5′
H
,6a′
H
)-trione (5a)
Colorless
solid; mp 258-260 ˚C. IR: 3361, 2963, 1699, 1612,
1471, 1373, 1124 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 1.99 (s,
3 H), 2.65 (s, 3 H), 3.21 (s, 3 H), 3.24 (s, 3 H), 3.62 (d, 1 H, J = 11.5 Hz),
3.92 (s, 1 H), 4.32 (d, 1 H, J = 11.5
Hz), 5.81 (br s, 1 H), 6.77 (d, 1 H, J = 7.7
Hz), 6.82 (d, 1 H, J = 7.7
Hz), 6.89-6.93 (m, 2 H), 7.08-7.10 (m, 2 H), 7.26
(t, 1 H, J = 6.9
Hz), 7.38 (t, 1 H, J = 7.6
Hz). ¹³C NMR (125 MHz, CDCl3): δ = 25.1,
26.2, 26.4, 34.6, 53.2, 55.0, 63.4, 72.3, 74.3, 108.8, 108.9, 121.8,
123.3, 123.4, 123.9, 126.4, 126.9, 130.4, 130.7, 143.9, 144.1, 174.0,
175.4, 177.1, 177.6. MS: m/z = 461 [M + H]+.
Anal. Calcd for C25H24N4O5 (460.17):
C, 65.21; H, 5.25; N, 12.17. Found: C, 65.29; H, 5.23; N, 12.24.
<A NAME="RG23610ST-22">22</A>
Crystallographic data of compound 5c in this letter have been deposited with
the Cambridge Crystallographic Data Centre as supplemental publication
No. CCDC-787473. Copies of the data can be obtained, free of charge
on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44
(1223)336033 or email: deposit@ccdc.cam.ac.uk].
<A NAME="RG23610ST-23">23</A>
Experimental Procedure
for the Synthesis of Spiropyrrolizidines 7a-e
A
mixture of isatin 1 (1 mmol), l-proline (6,
1.5 mmol), and Baylis-Hillman adducts 3 (1
mmol) was refluxed in MeOH (10 mL). Completion of the reaction was
evidenced by TLC analysis. The solvent was removed under vacuo,
and the crude product was subjected to column chromatography using
EtOAc-PE (2:8) as an eluent to afford pure spiropyrrolizidines 7a-e.
8b′-(1-Ethyl-3-hydroxy-2-oxoindolin-3-yl)-1,2′-dimethyl-6′,7′,8′,8a′-tetrahydro-1′
H
-spiro{indoline-3,4′-pyrrolo[3,4-
a
]pyrrolizine}-1′,2,3′(2′
H
,3a′
H
,8b′
H
)-trione (7b)
Brown
solid; mp 230-232 ˚C. IR: 3342, 2935, 1705, 1610, 1468,
1371, 1089 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 1.31 (t,
3 H, J = 6.9
Hz), 1.72-1.79 (m, 1 H), 1.87-1.91 (m, 3 H), 2.14-2.18
(m, 1 H), 2.31-2.36 (m, 1 H), 2.70 (s, 3 H), 3.21 (s, 3
H), 3.63-3.69 (m, 1 H), 3.80-3.86 (m, 1 H), 4.16 (s,
1 H), 4.76 (t, 1 H, J = 6.9
Hz), 5.66 (br s, 1 H), 6.78 (d, 1 H, J = 7.7
Hz), 6.86 (t, 2 H, J = 8.4
Hz), 6.93 (t, 1 H, J = 7.7 Hz),
7.06 (t, 1 H, J = 6.9
Hz), 7.17 (d, 1 H, J = 6.9
Hz), 7.26 (t, 1 H, J = 7.7
Hz), 7.35 (t, 1 H, J = 7.7
Hz). ¹³C NMR (125 MHz, CDCl3): δ = 12.4,
24.6, 24.9, 25.8, 26.3, 35.0, 42.3, 58.5, 62.2, 65.0, 66.9, 75.0,
108.7, 108.8, 122.5, 122.9, 124.2, 124.3, 126.4, 127.6, 130.2, 130.5,
143.4, 143.7, 174.3, 175.0, 177.2. MS: m/z = 501 [M + H]+.
Anal. Calcd for C28H28N4O5 (500.21):
C, 67.19; H, 5.64; N, 11.19. Found: C, 67.42; H, 5.66; N, 11.40.